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The threshold energy Et = 10.06 eV (0.002 eV standard deviation) is

determined for photoelectron emission by liquid water and is correlated with

Et = 8.45 eV for OH-(aq). Free energy changes and standard reduction

potentials are calculated for both emission processes. Reorganization free

energies are correlated to solvation free energies for H20+(aq) and

OH-(aq).

The photoionization of liquid water was investigated in [i] by means of

photoelectron emission spectroscopy, and the emission threshold energy was

estimated at Et a 9.3+0.3 eV. The same photon energy (within +0.1 eV) was

deduced for the injection of holes in liquid water In a photoelectrochemlcal

study of gold electrodes [2]. Great care was taken in [I] to avoid spurious

emission by traces of insoluble organic impurities. Yet, subsequent work on

inorganic anions (see fig. 1 in [3]) in which two potential sources of

contamination were eliminated (sec. 1) indicated that the 9.3 eV threshold

energy is definitely too low. A new investigation of water was undertaken.

Its results are reported here and are correlated with the data for

photoelectron emission by hydroxide ion.
A • • ",

',* 1. , I"



2

1. Resul ts

The emission spectrometer was the same as in [1] except for two

improvements. The polyethylene cylinder insulating electrically the rotating

quartz disk (target) from its metallic shaft was replaced by a nylon

cylinder. The quartz disk was fastened to the insulating cylinder by means of

a nylon screw instead of being cemented. These changes were made prior to the

work in [3,4]. The LiF window between the hydrogen lamp and the monochromator

was replaced by a new window after the determination of only three spectra.

This was done to lower the noise level and stray light errors arising from

fogging of the window by color centers. Yields were corrected for attenuation

of the photon flux by water vapor in the 1 mm gap between the water surface

being irradiated awd the opposite LiF window. The correcting factor computed

fror data in [5] was taken to decrease linearly from 1.1 to 1.05 from 9.90 to

10.77 aV. The signal of the photomultiplier tube monitoring the photon flux

was multiplied by a factor increasing linearly by 8% between 9.90 and 10.77 eV

(data from 16j). This correction compensated for attenuation of the photon

flux in the LiF window opposite to the water surface. Spectra were determined

repeatedly until a constant threshold energy was obtained.

The spectrum of fig. 1 shows no noticeable emission below 9.9 eV (vs. ca.

9.3 eV in [1), and yields are markedly lower than in [l1, e.g., by a factor

of ca. 6 at 10.3 eV. Each point of the spectrum in fig. 1 represents the

average of eight measurements each of which was made with a fresh water

sample. The threshold energy Et Z 10.06 eV (0.002 eV standard deviation)

was determined from a linear plot (97 points from 10.2 to 10.77 eV, fig. 1) of

the yield Y to the power 0.5 against photon energy [71. A statistical F-test

[8] unambiguously shows that the best linear fit of the data is obtained with

the exponent 0.5 of the yield. Departure from linearity near the threshold,
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which is usual [3,4], arises from complications not taken into account in

theory [7). Logarithmic dependence of the yield on photon energy fits the

data very poorly (F 2,000), and there is no Urbach edge (cf. [1)).

2. Photoelectron emission by liquid water

Emission by liquid water will be interpreted on the basis of the equation

'L3,4 ]

AGe = AG + tGH - AGr + Jejx , (1)

where e is the electronic charge and x the surface potential at the water-

water vapor interface. The free energies AGet bGr, -AG, -AGH pertain,

respectively, to the reactions,

H20(aq) = H20+(aq,) + e_(g) (2)

H20 (aq,) = H20+(aq) (3)

H20+(aq) + 1/2 H2(g) = H20(aq) + H+ (aq) (4)

H +(aq) + e'(g) = 1/2 H2 (g). (5)

The free energy of photoelectron emission LGe according to (2) includes the

contribution for electronic polarization of the medium by H2 0+(aq,) but

not for orientation polarization (Franck-Condon principle). The

reorganization free energy 4Gr for (3) is the sum of the contributions for

orientation polarization of the medium and vibrational and rotational

relaxation of the ion produced by photoionization. The latter contribution is

negligible since interatomic distances hardly change in the photoionization of

H20 in the gas phase [9]. The free energy LGH = 4.50 eV [10) correlates

the free energies referred to the vacuum level of the electron to the free

energies referred to the H+(aq)/1/2 H2(g) couple. The quantity AGH does

not include the contribution from the surface potential x z +0.1 V [11].

The free energy AGe differs from the threshold energy Et because of

the contribution from the surface potential x and possibly a systematic shift



4

inherent to the extrapolation method and theory [7] yielding Et. It was

found in [3] that measured Et's and calculated AGe 'S for Clf, Br',

I agree within the uncertainty arising from the surface potential. There

is no reason to expect a different conclusion for other photoionized species,

and the relationship AGe ; Et should hold in general. Thus, we set

AGe ; Et = 10.06 eV in (1) for liquid water.

Lower and upper limits of the free energy AG in (1) will be obtained.

The ions H20+(aq) and OHW(aq) are of comparable size, and consequently

their solvation and reorganization free energies should not be very

different. If one uses the value AGr -- 1.98 eV for OH'(aq) (sec. 3) in

(1), one computes "G = 3.58 eV. Another limit can be set on the value of AG

by using the gas-phase first ionization energy of water I = 12.61 eV [9. The

quantity I is an enthalpy, and the entropy contribution to gas-phase

ionization is neglected. One has I > AGe for two reasons: electronic

polarization of th* medium by the ion H20+(aq,) produced by (2) and

di.tribution of density of states in the liquid [121. One can assume that the

free energy of vaporization of water is nearly compensated by the contribution

to the solvation free energy of H20 (g) not arising from the ionic

charge. Thus, I - AGe > -AGep, where AGep is the contribution from

electronic polarization of the medium to the solvation free energy AGs of

H20+(aq). The quantity AGs is the solvation real energy in

electrochemical terminology (e.g., [13)). Thus, AGep > 10.06 - 12.61 eV or

AGep > -2.55 eV. The ratio AG r/A is close to 0.50 for the halides

(Table 1) and OH(aq) (sec. 3), and it will be assumed that this ratio is

also near 0.50 for H20+(aq)- Hence, AGep % AGr for H20 (aq), and

AGr > -2.55 eV. The corresponding limit is AG > 3.01 eV. Combining this

limit with the upper limit AG - 3.58 eV, one concludes that AG - 3.3+0.3 eV.
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This result is consistent with the value AG = 3.4+0.5 eV estimated in [152

from thermodynamic and kinetic data.

The changes of free energy for photoelectron emission by water are

displayed in fig. 2. The corresponding standard reduction potentials are also

shown. Reactions are written as oxidations (from left to right) for the scale

of free energies and as reductions for the scale of standard potentials.

The least photon energy required for photolysis of water with production

of hydrated electrons e-(aq) can be estimated [15] from E' = 3.3+0.3 eV

for H20+(aq)/H 20(aq) and 0= -2.77 eV [16) for e-(aq). Thus, a

photqn energy of at least 2.77 + 3.3+0.3 ;, 6.1+0.3 eV is required to produce

e (g). Formation of this species is indeed observed below 6.5 eV [16].

3. Photoelectron emission by hydroxide ion

The previously reported [3] threshold energy Et = 8.45 eV of OH-(aq)

ion was confirmed in the present investigation. This result will be

interpreted by the sequence of reactions:

OH(aq) = OH(aq,) + e'(g) (6)

OH(aq,) = OH(aq) (7)

OH(aq) + 1/2H2(g) = OH-(aq) + H+(aq) (8)

H+(aq) + e-(g) = 1/2H2 (g).o (9)

The hydroxyl OH(aq,) produced by photoionization in (6) has initially the

solvation configuration of OH-(aq) except for the loss of electronic

polarization. Subsequent reorganization in (7) yields OH(aq). The O-H

interatomic distance can be taken as constant during this process since this

distance is the same within 0.002 A for OH-(g) and OH(g) [17]. The loss of

orientation polarization therefore is the sole contribution to AGr for (7).

The effect of OH- on the surface potential of water is considerably smaller

than that of Cl- [13), and the corresponding uncertainty can be taken to be

that of water, namely +0.1 V (11].
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The value of AG deduced from (6) to (9) is given by eq. (1) where
e

AGe k Et = 8.45 eV and AG = 1.97 eV [15). One computes from (1) AG =

1.98+0.1 eV. The changes of free energy and standard reduction potentials are

shown in fig. 2 for photoelectron emission by hydroxide ion.

The ratio AGr/AGs for the hydroxide ion will be determined to

complement the results of Table 1. The solvation enthalpy of OH'(aq) is

-4.78+0.25 eV [18]. This quantity can also be computed from a cycle of

reactions involving the electron affinity (1.83+0.04 eV [17]) of OH(g). The

free energy AGs for this cycle can also be calculated if the unknown entropy

contribution is neglected for the process OH(g) + e'(g) = OH'(g). The

entropy contribution to the solvation free energy AGs of OH'(aq) is

estimated in this way at ca. 0.6 eV from the enthalpy and free energy

calculations. Thus, AGs = -4.78 + 0.6+0.25 ; -4.2+0.3 eV. Since AGr =

-1.98+0.1 eV for OH-(aq), one obtains 0.44 < AGr/A 5s < 0.51. This

result is comparable to the more accurate ratios for the halides in Table 1.

4. Correlation between the threshold energies of water and hydroxide ion

The threshold energies of H20(aq) and OH-(aq) will be correlated using

fig. 3. The levels at -2.46 and -1.63 eV in this diagram correspond,

respectively, to the free energies of formation of H20(aq) and OH'(aq) [19].

These levels differ by 0.0592 log 10"14 = -0.83 eV. One has AG = 3.3+0.3 eV,

LGH = 4.5 eV, AGr = -2.26+0.3 eV for emission by H20(aq) (sec. 2).

Likewise, AG 1.97 eV, AGH = 4.5 eV, &Gr = -1.98+0.1 eV for emission by

OH'(aq) (sec. 3). One deduces from fig. 3,

AGe(H20) - AGe(OH-) = [AG(OH') - AG(H 20)]

+ [AG(H 2
0+) - AG(OH)] + [AGr(OH) - AGr (H20)]

- (-1.63 + 2.46) + (0.84 - 0.34) + (-1.98 + 2.26)

- 0.83 + 0.50 + 0.28

- 1.61 eV. (10)
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The symbol (aq) is deleted from all species in (10) to simplify the writing.

The sum of the quantities between the first and second pairs of brackets in

(10) represents the difference between the free energy changes AG = 3.3 and

1.97 eV for emission by H20(aq) and OH-(aq).

The threshold energies (AGe Et , sec. 2) of H20(aq) and OH(aq)

are different, according to (10), for the following reasons: (i) The free

energy of formation is less negative by 0.83 eV for OH'(aq) than for

H20(aq). This is the case because water is only slightly dissociated. (ii)

The OH(aq) radical does not protonate even in acid (1 M) solution [151, and

therefore the free energy of formation of H20+(aq) must be more positive

than that of OH(aq). Decomposition of H20+(aq) into OH(aq) and H+(aq)
is favored. (iii) The reorganization free energies of H 20+(aq) and OH(aq)

are not equal (but not very different).
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Table 1

Experimental and calculated AGr/ AGs ratios for the halides

Ea) AGb) .G _AGrs Gr/ Gs AGr /Gs C)
(eV) (eV) (eV) (eV) (experimental) (theory)

F" - - - 4.66 - 0.50

Cl" 8.81 2.51 1.80 3.46 0.52 0.50

Br- 8.05 1.98 1.57 3.18 0.49 0.49

I" 7.19 1.32 1.37 2.81 0.49 0.48

a)With correction for absorption in water vapor and LiF window (sec. 1).

b)AG for X-(aq) = X(aq) + e-(g). LG includes LGs = 0.06 eV for X(g) =

X(aq) 110).

c)AG calculated from eq. (8) in [141. AGr = AGs - AGep, where

AGep (< 0) is computed from the Born equation.
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Captions to Figures

Fig. 1. Photoelectron emission spectrum of liquid water at 1.50C (curve A)

and plot of the yield (Y) to the power n = 0.5 vs. photon energy (line B).

*Plot for statistical F-test of the exponent n of the yield in inset. F =

I R2 (N - 2)/(1 - R2 ), where R is the correlation coefficient for least

square fitting of line B and N the number of points.

Fig. 2. Free energy changes (vs. vacuum level of the electron) and standard

reduction potentials for photoelectron emission by water and hydroxide ion.

Uncertainties given in text.

Fig. 3. Free energies of formation and free energy changes for photoelectron

emission by water and hydroxide ion. Symbol (aq) deleted from all species.

if e'(g) represents the electron in the gas phase.
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